

ЧАСТОТНО-РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД

ПЕРЕМЕННОГО ТОКА

мощностью от **0,75** до **475** квт

Содержание

Частотно-регулируемый электропривод SB-19	3
Особенности ЧРЭ SB-19	4
Защитные функции ЧРЭ SB-19	5
Характеристики параметров управления	6
Спецификация	8
Комплектация	10
Массо-габаритные показатели	11
Схема подключения цепей управления	12
Схема подключения силового оборудования	13
Панель управления	14
Таблица подбора дополнительных элементов силовой цепи	15
Номенклатура дополнительных плат управления	16
Комплектные решения	17

ЧАСТОТНО-РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД SB-19

Научно-производственное предприятие "Уралэлектра", совместно с японской корпорацией по производству электротехнического оборудования Meidensha Corporation разработали частотнорегулируемый электропривод переменного тока серии SB-19 нового поколения.

Вы можете установить SB-19 с асинхронным электродвигателем для привода любого механизма, где Вы предполагаете плюсы от регулирования скорости и получить множество дополнительных преимуществ.

ЧРЭ SB-19 представляет собой надежный регулятор скорости асинхронных электродвигателей, действующий на принципе изменения частоты и напряжения, прикладываемых к обмоткам статора электродвигателя.

Новый высокотехнологичный привод построен на основе последней IGBT-технологии 5-го поколения и использует новейшее программное обеспечение, математически описывающее модель векторного управления электромагнитным потоком асинхронного электродвигателя, что позволяет получить высокий крутящий момент двигателя даже на низких частотах вращения и позволяет повысить качество технологического процесса.

SB-19 способен управлять не только стандартными асинхронными двигателями, но и современными двигателями с постоянными магнитами. В обоих случаях возможно управление как с датчиком, так и без датчика скорости.

ЧРЭ SB-19 ОБЛАДАЕТ:

- высокими динамическими характеристиками
- точностью поддержания частоты вращения
- постоянством крутящего момента
- широким диапазоном регулирования числа оборотов
- большими коммуникационными возможностями
- высокой энергоэффективностью
- низким влиянием на питающую сеть и электродвигатель

ОСОБЕННОСТИ ЧРЭ SB-19

Сохранены все возможности предыдущей серии ЧРЭ (SB-17).

Широкий диапазон мощностей

οт 0.4κВт – 475кВт

Все функции в одном - 6 режимов управления в одном преобразователе

- управление поддержанием V/f при переменном моменте
- управление поддержанием V/f при постоянном моменте
- векторное управление без датчика скорости
- векторное управление с датчиком скорости
- управление двигателем с постоянными магнитами без датчика скорости
- управление двигателем с постоянными магнитами с датчиком скорости

Высокая надежность

- средняя наработка до отказа, согласно ГОСТ 27.402-95 50 тысяч часов (более5 лет)
- средний срок службы 20 лет

Энергосбережение

- усовершенствованное управление током электродвигателя
- снижение внутренних потерь за счет использования комплектующих с высоким КПД

■ Расширенные функции пользовательского программного обеспечения

- программируемый пользователем встроенный ПЛК
- программируемые, специальные функции
- ПИД-регулирование
- управление насосами
- управление моталками текстильных машин
- работа по шаблону
- управление грузоподъемными механизмами
- многодвигательный режим

Низкое влияние на питающую сеть и двигатель

- встроенный помехоподавляющий фильтр (до 22кВт)
- встроенный реактор в звене постоянного тока (от 30кВт и выше)
- мягкозвуковой режим модуляции

■ Широкие коммуникационные возможности

• управление по интерфейсам ModBus, ProfibusDP, DeviceNet, CANopen, CC-Link

ЗАЩИТНЫЕ ФУНКЦИИ ЧРЭ SB-19

SB-19 обеспечивает следующие виды защит электродвигателя и самого ЧРЭ.

Тип защиты	Механизм действия
Отключение из-за перегрузки по макс. току (ОС)	Преобразователь блокируется, и привод останавливается, если мгновенное значение выходного тока превышает установленное значение.
Отключение из-за перенапряжения (OV)	Преобразователь блокируется и привод останавливается, если мгновенное значение напряжения узла постоянного тока превышает установленное значение.
Отключение из- за пониженного напряжения (UV)	Преобразователь блокируется и привод останавливается, если напряжение в звене постоянного тока падает до 65% или ниже из-за сбоя в подаче питания или при снижении напряжения во время работы.
Ограничение по току	При перегрузке выходная частота автоматически настраивается таким образом, чтобы выходной ток был меньше, чем предел тока перегрузки (125%).
Ограничение перенапряжения	Если выходная частота понизилась, напряжение постоянного тока в главной цепи будет расти из-за рекуперации. Выходная частота автоматически будет настроена таким образом, чтобы предотвратить превышение уставки напряжения узла постоянного тока.
Отключение из-за перегрузки (OL)	Преобразователь блокируется и привод останавливается, если параметры перегрузки превышены. Установка (120% в течение 1 мин.) может быть изменена в соответствии с характеристиками двигателя.
Перегрев (UOH)	Для определения температуры, на радиаторе установлен термистор и термоконтакты. При превышении допустимой температуры преобразователь блокируется и привод останавливается.
Самодиагностика (IO, dER, CPU)	Внешние цепи и данные контролируются и проверяются центральным процессором на предмет выявления ошибок и неисправностей.
Отключение из-за К.З. на землю (корпус) (GRD)	Преобразователь блокируется и привод останавливается при обнаружении К.З. на землю.
Повреждение силового модуля (РМ)	При обнаружении неисправности в силовом модуле привод останавливается.
Потеря фазы	При обнаружении потери фазы (входной или выходной) преобразователь блокируется и привод останавливается.
А ТАКЖЕ ЗАЩИТЫ:	Превышение допустимой скорости Отказ датчика скорости Перегорание предохранителя в силовой цепи и др.

ХАРАКТЕРИСТИКИ ПАРАМЕТРОВ УПРАВЛЕНИЯ

Характеристики управления частотой

Параметры	Me	тоды управления									
управления	V/f управление	Векторное управление	Управление двигателем с пост. магнитами								
Система управления	Полностью цифровое управление. Синусои	дальная аппроксимация ШИМ									
Несущая частота	Монозвуковой способ: 1÷15 кГц (Программі Мягкозвуковой способ: Средняя частота 2.1 Метод частотной модуляции (3х-тоновая мо	÷ 5 кГц	1)								
Разрешение выходной частоты		0,01 Гц									
Разрешение заданной частоты	0.039	Гц (цифровой режим) 6 (аналоговый режим) ию к максимальной частоте									
Погрешность частоты	±0.01% (цифровой режим) при 25±10°C ±0,1% (аналоговый режим) при 25±10°C										

Характеристики управления моментом

	V/f управление	Векторное управление	Управление двигателем с пост. магнитами			
Характеристики напряжение/частота	Линейная характеристика может быть установлена по пяти произвольным точкам между 3 и 440 Гц	Задается между 150 и 9999 мин ⁻¹ (макс.180Гц)	Задается между 150 и 9999 мин ⁻¹ (макс. 210 Гц)			
Усиление момента	Ручной/автоматический выбор	Оптимизируется	автоматически			
Макс. усиление момента	Максимальный момент для применяемого двигателя при использовании автоматической настройки	Оптимизируется авто автоматического				
Автоматическая настройка	Автоматическое измерение постоянных дви Автоматическое измерение различных парс (время измерения прибл. 2 мин.)		Настройка фазы энкодера. Оценка положения магнитного полюса			
Стартовая частота	0.1 ÷ 60.0 Гц	Оптимизируется	автоматически			
Стартовый момент	200% от Мном	Оптимизируется автомат нагрузочной ха				
Время разгона/ торможения	от (Время разгона/торможения х2, н	0.01 до 60000 сек. наладочный режим x1, програм	мные уставки 8			
Способы управления	Э спосоой управления. Работа	вперед/работа назад стоп (вперед)/Работа+реверс сное задание скорости	(назад) стоп			
Метод останова	Выбор: остановка с замедле	нием по скорости или аварийн	ый останов			
Торможение подачей постоянного тока	Стартовая частота торможения. Задается произвольно 0.1 ÷ 60.0Гц. Напряжение торможения. Задается произвольно 0.1÷20%.	Скорость то Задается произволі Ток торм Задается произвол	ьно от 0.00 до 50%. ожения.			
Выходная частота	от 0 до 440 Гц	от 0 до 180 Гц	0 Гц от 0 до 210 Гц			

ХАРАКТЕРИСТИКИПАРАМЕТРОВ УПРАВЛЕНИЯ

Характеристики управления скоростью

	V/f управление	Векторное управление	Управление двигателем с по- стоянными магнитами
Пошаговое задание скорости	8 скоростей; 8 времен разгона/торможения	я задаваемые 5-битным кодом	
Узел задания	В режиме дистанционного управления y = Ax + B + C y: сигнал управления x: сигнал задания A: 0.000 ÷± 10.000 B: 0.00 ÷ 440Гц C: Дополнительный вход Верхняя/нижняя граница выхода	В режиме дистанционного у = Ax + B + C у: сигнал управления x: сигнал задания A: 0.000 ÷± 10.000 B: 0.00 ÷ 9999 min ⁻¹ C: Дополнительный вход Верхняя/нижняя граница	
Пропуск диапазона частот	Пропуск до трех диапазонов частот шириной 0.0 ÷ 10Гц		
Компенсация скольжения	Коэффициент компенсации скольжения 0 ÷ 20.0		
Работа по программе	Работа по программе 10 ц	лагов. Синхронная/асинхронна	я по выбору.
Встроенный ПЛК	Возможно выполнение арифметических оп- трации (LPF), и пр., в соответствие с задание выходных сигналов. Программная емкость: макс. 20 банков х 16	ем логических входных / выході	ных и аналоговых входных /
Другие режимы	ПИД-регулирование, подхват на ходу, автоматический пуск, перезапуск при падении напряжения,	предотвращение раб пилообразная работо управление торможе управление насосам	а, нием при пропаже питания,
Интерфейсные хар	рактеристики		
Панель управления	2 варианта дисплея: жидкокристаллический Выбор автономного/дистанционного управ параметры выбор/изменение/копирование Возможна установка панели на удлиненны	вления, работа в прямом /обрат e.	гном направлении, все
Логические входы	7 программируемых входов PSI1 - PSI7. Вход PSI7 может использоваться как вход д	ля импульсного задания (максі	имум 10кГц).
Логические выходы	2 релейных программируемых выхода: FA 3 программируемых выхода «открытый кол импульсный выход. Логические выходы могут быть запрограми готовность привода, работа в прямом напр ние, коды неисправности и другие.	плектор» PSO1 - PS3. Выход PSC мированы на следующие функг	ции:
Аналоговые входы	2 аналоговых входа: AI1, AI2: (0 - 10 B, 0 - 5 1 аналоговый вход (0 - ±10 B, 0 - ±5 B, 1 - 5 Используются для задания частоты, задани	B).	
Аналоговые выходы	2 аналоговых выхода: AO1, AO2 (0 - 10 E Аналоговые выходы могут быть запрограмі выходная частота, выходной ток, выходное	мированы на следующие сигно	олы:

Стандартно встроенный Modbus RTU или опциональные платы для протоколов ProfibusDP, DeviceNet,

CANopen, CC-Link.

Управление по

сетевым протоколам

СПЕЦИФИКАЦИЯ

Номинальные данные

при управлении нагрузкой с переменным моментом

	C10	C15	C25	C35	C55	C80	C110	C150	C200	C250	C300	C400	C550	C750	C1000	C1200	C1400	C1700	C2000	C2500	C3300	C4000	C4600	C5500
Ном. мощность [кВА]	1.7	2.5	3.8	6.0	9.0	12	16	21	26	30	42	51	60	75	102	124	148	173	222	297	360	409	513	603
Выходной ток [А]	2.5	3.6	5.5	8.6	13	17	23	31	37	44	60	73	87	108	147	179	214	249	321	428	519	590	740	870
Мощность двигателя (кВт)	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	250	315	400	475
Несущая частота									ОТ	1 до 1	5 кГц (г	10 умол	тчаник) : МЯГК	озвуков	вой мет	од 4 кГ	Т)						
Перегрузка		120% в течение 1 мин., 140% в течение 2,5 секунд																						

при управлении нагрузкой с постоянным моментом

	C10	C15	C25	C35	C55	C80	C110	C150	C200	C250	C300	C400	C550	C750	C1000	C1200	C1400	C1700	C2000	C2500	C3300	C4000	C4600	C5500
Ном. мощность [кВА]	1.0	1.7	2.5	3.8	6.0	9.0	12	16	21	26	30	42	51	60	72	102	124	148	173	222	297	360	409	513
Выходной ток [А]	1.5	2.5	3.6	5.5	8.6	13	17	23	31	37	44	60	73	87	108	147	179	214	249	321	428	519	590	740
Мощность двигателя [кВт]	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	250	315	400
Несущая частота			от 1 до 15 кГц (по умолчанию: мягкозвуковой метод 4 кГц)																					
Перегрузка		150% в течение 1 мин., 175% в течение 2,5 секунд																						

Параметры питающей сети

Входное	380 - 480 B ±10%
напряжение	50 или 60 Гц ±5%

Выходные параметры

Вых. напряжение	380 – 480 B (макс.)
Выходная частота	от 0,1 до 440 Гц

СПЕЦИФИКАЦИЯ

Устройство силовой цепи

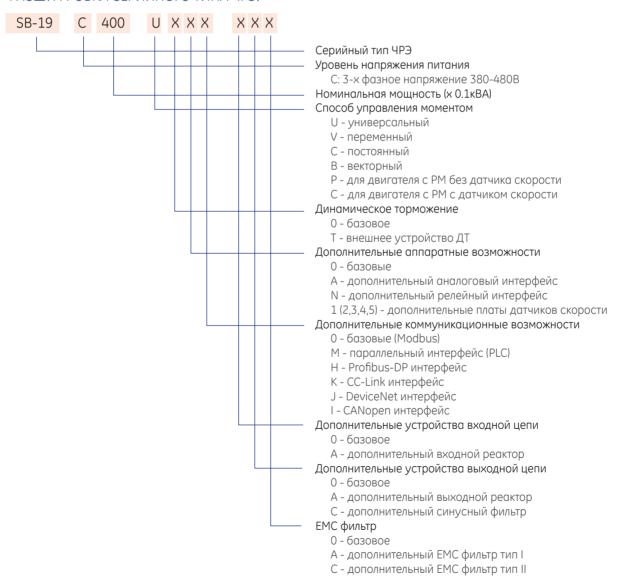
	C10	C15	C25	C35	C55	C80	C110	C150	C200	C250	C300	C400	C550	C750	C1000	C1200	C1400	C1700	C2000	C2500	C3300	C4000	C4600	C5500
Фильтр ЕМС	встроенный (дополнительно) автономный (дополнительно)																							
Реактор DCL				вст	роенн	ный (д	дополн	полнительно) автономный (дополнительно)																
Блок ДТ					вст	ооенн	ный										авто	автономный						
Резистор ДТ				встр	оеннь	ΝЙ			автономный															

Конструкция

	C10	C15	C25	C35	C55	C80	C110	C150	C200	C250	C300	C400	C550	C750	C1000	C1200	C1400	C1700	C2000	C2500	C3300	C4000	C4600	C5500
Метод установки					МО	нтаж	на сте	ну											ıу (станд ций (доі					
Степень защиты						ΙP	20											900 (стаі IP20 (да						
Способ охлаждения											прин	удител	ьное в	оздуш	ное охл	аждени	е							
Примерный вес [кг]			3				5			12		2	3	27	42	45	60	65	90	100	200	285	290	295
Цвет окраски	Munsell N4.0																							

Необходимые условия окружающей среды

Температура окружающей среды: от -10 до +50°С. Относительная влажность: 95% и ниже (без образования конденсата), высота над уровнем моря: 1000 м и ниже, Вибрация: 4.9 м/с² и ниже Отсутствие агрессивных или взрывоопасных газов, паров, пыли, масляного тумана или хлопчатобумажной пыли.

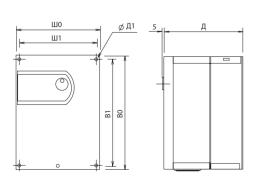


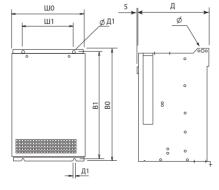
КОМПЛЕКТАЦИЯ

Табличка с паспортными данными и метод отображения типа устройства

Тип SB19	C40	00 - U000 - 000	
Серийный №		0108006	
Параметры	U (B)	f (Гц)	I (A)
Вход	380-480	50/60	
Выход		0,1-440	60/73
	НПП "Уралэлект Екатеринбург Ро по лицензии MEIDEN	ССИЯ (JAPAN)	ведено в России

РАСШИФРОВКА СЕРИЙНОГО ТИПА ЧРЭ:





МАССО-ГАБАРИТНЫЕ ПОКАЗАТЕЛИ

Тип SB-19	Размеры (мм)						Крепежный болт	Bec (ĸr)	Рисунок
	Ш0	Ш1	В0	B1	Д	Д1	33/11	(ISI)	
C10	155	140	250	235	180	6	M4	3	1
C15	155	140	250	235	180	6	M4	3	1
C25	155	140	250	235	180	6	M4	3	1
C35	155	140	250	235	180	6	M4	3	1
C55	155	140	250	235	180	6	M4	3	1
C80	205	190	275	260	196	7	M4	5	1
C110	205	190	275	260	196	7	M4	5	1
C150	205	190	275	260	196	7	M5	5	1
C200	260	240	350	330	298	7	M5	12	1
C250	260	240	350	330	298	7	M5	12	1
C300	260	240	350	330	298	7	M6	12	1
C400	300	200	470	450	317	10	M8	23	2
C550	300	200	470	450	317	10	M8	23	2
C750	300	200	520	500	317	10	M8	27	2
C1000	435	300	615	595	350	10	M10	42	3
C1200	435	300	615	595	350	10	M10	45	3
C1400	500	400	710	684	350	10	M10	60	3
C1700	500	400	710	684	350	10	M10	65	3
C2000	580	400	1020	990	470	15	M10	90	3
C2500	580	400	1020	990	470	15	M10	100	3
C3300	580	400	1260	1230	470	15	M16	200	3
C4000	870	600	1260	1230	470	15	M16	285	3
C4600	870	600	1260	1230	470	15	M16	290	3
C5500	870	600	1260	1230	470	15	M16	295	3

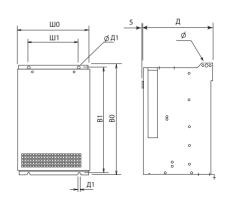
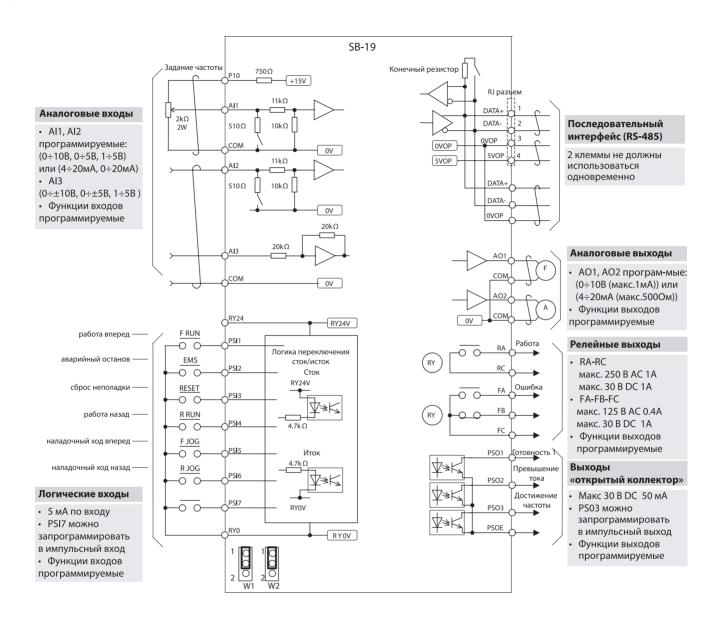



Рис. 1

СХЕМА ПОДКЛЮЧЕНИЯ ЦЕПЕЙ УПРАВЛЕНИЯ

(Примечание)

Не выбирайте импульсный выходной сигнал при использовании дополнительной платы PSB (энкодер).

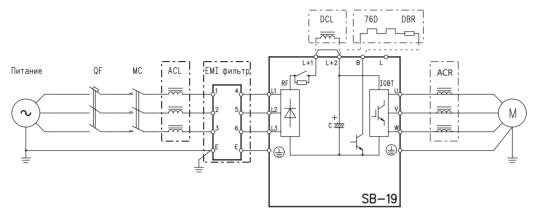
Для подключения к клеммнику цепей управления используйте кабель сечением от 0.35 до 1мм². Винты следует затягивать с усилием 0.6 Нм.

Длина цепи управления вход/выход должна быть как можно более короткой.

При длине более 100м рекомендуем установить развязывающие элементы.

Для аналоговых сигналов (задания, датчика и т.п.) используйте двухжильный провод или двухжильный экранированный провод. Подсоедините экран к клемме ТВ1 СОМ.

Длина провода должна быть как можно более короткой.


При длине более 100м рекомендуем установить развязывающие элементы.

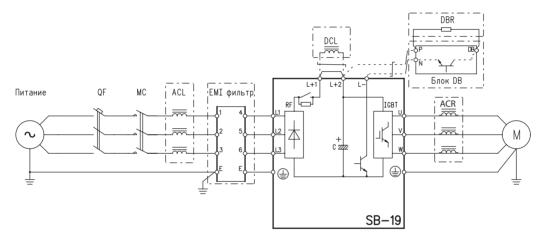
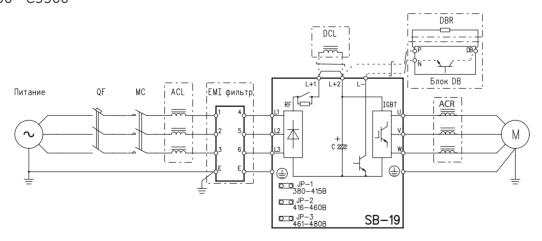


СХЕМА ПОДКЛЮЧЕНИЯ СИЛОВОГО ОБОРУДОВАНИЯ


для С250 и меньше

для С300 - С750

для С1000 - С5500

QF - выключатель автоматический

МС - контактор (при использовании режима ДТ)

DB - блок динамического торможения

ACR - выходной реактор

ACL - реактор входной

Фильтр - помехоподавляющий фильтр

DCL - реактор звена постоянного тока

DBR - резистор динамич. торможения

ПАНЕЛЬ УПРАВЛЕНИЯ

Существует два вида панелей оператора (с ЖК-дисплеем или LCD-дисплеем) для комплектации ЧРЭ SB-19.

Индикаторы режима работы (светодиоды)

FWD (вперёд)	Привод вращается в прямом направлении	Когда оба светодиода мигают одновременно, это означает действие торможения постоянным током.			
REV (назад)	Привод вращается в обратном направлении	Когда мигает один из двух, это означает, что привод за- медляется по команде изменить направление.			
FLT (неисправность)	Привод определил неисправность и остановился. Сброс неисправности привода возможен с операционной панели или с клеммника (сигнал RESET).				
LCL (автономный режим)	Привод в автономном режиме может управляться с операционной панели (только FWD, REV и STOP). Когда светодиод не горит, привод находится в режиме дистанционной онного управления и может управляться с клеммника (последовательностью внешних команд).				

Светодиоды индикации единиц измерения

Hz – A – % Показывает единицу измерения значения, отображенного на экране.

ТАБЛИЦА ПОДБОРА ДОПОЛНИТЕЛЬНЫХ ЭЛЕМЕНТОВ СИЛОВОЙ ЦЕПИ

Тип SB-19	Для нагрузки с постоянным моментом				Для нагрузки с переменным моментом			
	Входной реактор	Выходной дроссель	ЕМС фильтр	Тип блока ДТ	Входной реактор	Выходной дроссель	ЕМС фильтр	Тип блока ДТ
C10	ACR3A8H1E	ACR3A0H05E	3SUP-HQ10-ER-6		ACR3A8H1E	ACR3A0H05E	3SUP-HQ10-ER-6	в составе ЧРЭ
C15	ACR3A8H1E	ACR3A0H05E	3SUP-HQ10-ER-6		ACR4A5H1E	ACR3A0H05E	3SUP-HQ10-ER-6	
C25	ACR4A5H1E	ACR3A0H05E	3SUP-HQ10-ER-6	В	ACR6A3H4E	ACR3A0H05E	3SUP-HQ10-ER-6	
C35	ACR6A3H4E	ACR3A0H05E	3SUP-HQ10-ER-6		ACR10A2HE	ACR10A0H05E	3SUP-HQ20-ER-6	
C55	ACR10A2HE	ACR10A0H05E	3SUP-HQ10-ER-6		ACR14A1H4E	ACR14A0H05E	3SUP-HQ20-ER-6	
C80	ACR14A1H4E	ACR14A0H05E	3SUP-HQ20-ER-6	составе ЧРЭ	ACR18A1H1E	ACR18A0H05E	3SUP-HQ30-ER-6	
C110	ACR18A1H1E	ACR18A0H05E	3SUP-HQ20-ER-6		ACR27A0H75E	ACR27A0H05E	3SUP-HQ30-ER-6	
C150	ACR27A0H75E	ACR27A0H05E	3SUP-HQ30-ER-6		ACR35A0H58E	ACR35A0H05E	3SUP-HQ50-ER-6	
C200	ACR35A0H58E	ACR35A0H05E	3SUP-HQ50-ER-6		ACR38A0H58E	ACR38A0H05E	3SUP-HQ50-ER-6	
C250	ACR38A0H58E	ACR38A0H05E	3SUP-HQ50-ER-6		ACR45A0H45E	ACR45A0H05E	3SUPF-AH75-ER-6-OI	
C300	ACR45A0H45E	ACR45A0H05E	3SUPF-AH75-ER-6-OI	V23-DBUH2	ACR70A0H29E	ACR62A0H05E	3SUPF-AH100-ER-6-OI	V27 DD1117
C400	ACR70A0H29E	ACR62A0H05E	3SUPF-AH75-ER-6-OI	V27 DD11117	ACR90A0H22E	ACR90A0H05E	3SUPF-AH100-ER-6-OI	V23-DBUH3
C550	ACR90A0H22E	ACR90A0H05E	3SUPF-AH100-ER-6-OI	V23-DBUH3	ACR115A0H18E	ACR115A0H05E	3SUPF-AH150-ER-6-OI	- V23-DBUH4
C750	ACR115A0H18E	ACR115A0H05E	3SUPF-AH100-ER-6-OI		ACR115A0H18E	ACR115A0H05E	3SUPF-AH150-ER-6-OI	
C1000	ACR115A0H18E	ACR115A0H05E	3SUPF-AH150-ER-6-OI		ACR160A0H14E	ACR160A0H05E	3SUPF-AH200-ER-6-OI	
C1200	ACR160A0H14E	ACR160A0H05E	3SUPF-AH200-ER-6-OI		ACR185A0H11E	ACR185A0H05E	3SUPF-AH200-ER-6-OI	
C1400	ACR185A0H11E	ACR185A0H05E	3SUPF-AH250-ER-6-OI		ACR225A0H096E	ACR225A0H05E	3SUPF-AH250-ER-6-OI	
C1700	ACR225A0H096E	ACR225A0H05E	3SUP-B192300-F	V23-DBUH4	ACR300A0H067E	ACR300A0H05E	3SUP-B192300-F	
C2000	ACR300A0H067E	ACR300A0H05E	3SUP-HP500-ER-6		ACR360A0H056E	ACR360A0H05E	3SUP-HP500-ER-6	
C2500	ACR360A0H056E	ACR360A0H05E	3SUP-HP500-ER-6		ACR460A0H056E	ACR460A0H05E	3SUP-HP500-ER-6	
C3300	ACR460A0H056E	ACR460A0H05E	3SUP-HP500-ER-6		ACR550A0H039E	ACR550A0H05E	3SUP-HP700-ER-6	V23-DBUH4 × 2
C4000	ACR550A0H039E	ACR550A0H05E	3SUP-HP700-ER-6		ACR625A0H035E	ACR625A0H05E	3SUP-HP500-ER-6 X 2	
C4600	ACR625A0H035E	ACR625A0H05E	3SUP-HP500-ER-6 X 2	V23-DBUH4 x 2	ACR740A0H031E	ACR740A0H05E	3SUP-HP500-ER-6 X 2	
C5500	ACR740A0H031E	ACR740A0H05E	3SUP-HP500-ER-6 X 2		ACR850A0H028E	ACR850A0H05E	3SUP-HP700-ER-6 X 2	V23-DBUH4 ×3

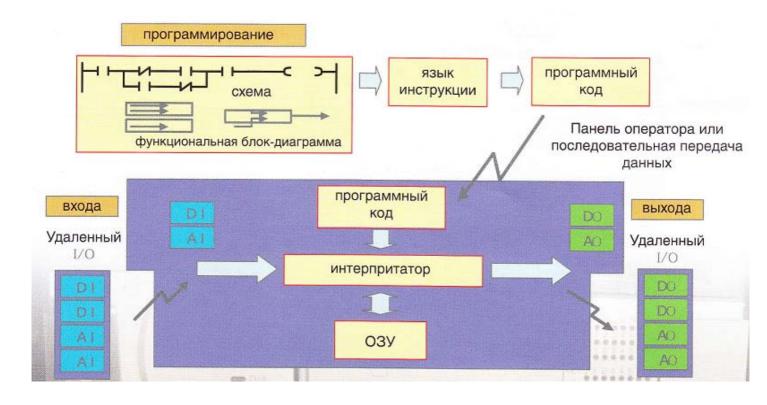
НОМЕНКЛАТУРА ДОПОЛНИТЕЛЬНЫХ ПЛАТ УПРАВЛЕНИЯ

Тип платы	Код	Функция		
Датчик скорости 1 (совместимый с энкодером)	SB-DN1	Плата датчика скорости совместимая с энкодером с дифференциальными выходами. Рабочая частота: 60±10кГц и 20кГц.		
Датчик скорости 2 (совместим с линейным усилителем)	SB-DN2	Плата датчика скорости совместимая с энкодером с линейным выходом. Рабочая частота: 250кГц (сигналы: фазы A,B,Z).		
Датчик скорости 3 (совместим с двигателем РМ)	SB-DN3	Плата измерения скорости (положения поля) для управления двигателем с постоянными магнитами (совместимая с линейным усилителем выхода энкодера).Рабочая частота: 250кГц (сигналы: фазы A,B,Z,U,V,W).		
Датчик скорости 4	SB-DN4	Плата определения скорости совместимая с энкодером Heidenhain ERN1387. 1Vp-p 2-фаза, 2-синусоидная + Z-пульс фаза.		
Аналоговый интерфейс AI/AO	SB-AI0	Изолированные 4 аналоговых входа и один аналоговый выход. Аналоговый вход: 16 бит (диапазон вх. сигнала ±10В) Аналоговый выход: 12 бит (диапазон вых. сигнала 10В)		
Релейный интерфейс	SB-RY0	Используется, чтобы расширить входы/выходы. Дискретный вход: 4 входа(PSI8÷11) Дискретный выход: 4 выхода (PSO4÷7)		
Параллельный интерфейс	SB-P10	Используется для управления от программируемого логического контроллера. Параллельный ввод данных – 16 бит Длина данных – Выбор между 16,12,8 битами Формат – Выбор между двоичным или двоично-десятичным Открытый коллекторный выход - 2 выхода (PSO4,5)		
Интерфейс CC-link	SB-SL3	Используется для обмена данными по сети СС-link. Скорость передачи: 156 kб/сек, 625kб/сек, 2.5Мб/сек, 5Мб/сек, 10Мб/сек (настройки DIP переключателем) Число станций: 64 станций		
Интерфейс Devic eNet	SB-SL2	Используется для обмена данными по сети DeviceNet. Скорость передачи: 125 кб/сек, 250 кб/сек, 500 кб/сек (настройки DIP переключателем.) Число станций: 64 станции		
Интерфейс CANopen	SB-SL1	Используется для обмена данными по сети CANopen. Скорость передачи: 125 кб/сек, 250 кб/сек, 500 кб/сек, 1Мб/сек Число станций: 128 станций (настройки DIP переключателем.)		
Интерфейс Profibas-DP	SB-SL0	Используется для обмена данными по сети с протоколом Profibus DP Скорость пердачи: 12 Мбод. Количество устройств: 126 устройств		

ВСТРОЕННЫЙ ПРОГРАММИРУЕМЫЙ ЛОГИЧЕСКИЙ КОНТРОЛЛЕР

Привод SB-19 имеет встроенный программируемый логический контроллер (ПЛК). Входами и выходами контроллера могут быть как дискретные, так и аналоговые входа и выхода самого привода.

Программирование ПЛК осуществляется через привод:

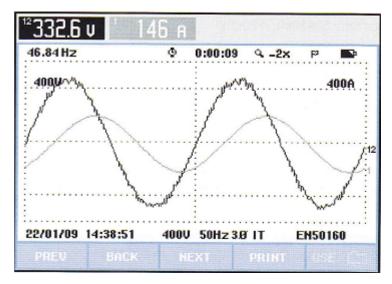

- программу можно ввести или изменить с панели оператора (быстро и просто);
- программу можно загрузить с персонального компьютера через последовательный интерфейс (удобно и наглядно).

Контроллер имеет следующие особенности:

- Команды программы ПЛК представлены в виде кодовых инструкций;
- Объём программной памяти 20 блоков по 16 команд;
- Стандартные арифметические функции, булева логика, сравнение, таймеры и пр.;
- Работа с 32-битными числами.

Общее представление о работе ПЛК

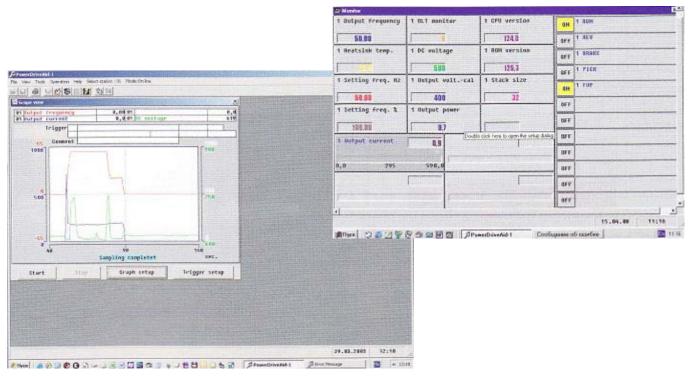
Контроллер работает по программе, общий вид которой представлен ниже. Один блок команд обрабатывается интерпретатором циклически с 2 мс интервалом, что соответствует времени цикла самого привода. Количество блоков команд устанавливается параметром U10-0, поэтому если программа большая, то можно объединить все двадцать блоков команд, тогда время обработки всей программы составит 40 мс.



ПОКАЗАТЕЛИ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ

Форма кривых выходного напряжения и выходного тока ЧРЭ SB-19.

счет применения современного цифрового управления автономным инвертором напряжения c широтноимпульсной модуляцией (ШИМ) и установкой реакторов достигается качественная синусоидальная аппроксимация выходного напряжения.



ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ ПНР

В комплекте с ЧРЭ может поставляться программное обеспечение Power Drive Aid для проведения наладочных работ. Персональный компьютер (ноутбук) подключается через последовательный порт к ЧРЭ.

Данное ПО позволяет:

- 1. Производить настройку параметров ЧРЭ, сохранять их в память и записывать в другой привод.
- 2. В одном окне можно как управлять приводом, подавая команды и значения на дискретные и аналоговые входа, так и контролировать состояние параметров ЧРЭ.
- 3. Производить запись в реальном времени до 4 параметров, что значительно повышает эффективность при наладке сложного технологического оборудования.

